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Abstract 
Queuing theory is usually introduced to students from second year onwards in a 

university undergraduate programme, as the mathematical principles governing 

queues can be fairly demanding, making it challenging to introduce any earlier. 

However, we often see queues and experience queuing in real life. It would therefore 

be appropriate, relevant and useful to introduce the concept of queuing theory to pre-

university students or first-year undergraduates.  The approach suggested is through 

simulation models supported by suitable technology.  In doing so, students can 

understand some basic probability theory and statistical concepts, such as the Poisson 

process and exponential distribution, and learn how queues may be modelled through 

simulation, without the need to know all about classical queuing theory.  In this paper, 

we will discuss the role that simulation can play in a classroom to create real world 

learning experiences for students.  To provide a concrete illustration, a set of real 

data collected in a simple ATM queue will be used to explain how students can 

systematically be engaged in a modelling activity involving queues. Following that, 

queues at cinema ticketing counters are studied to discuss the modelling of a more 

complex queue system. 

 

1. Introduction   
Queuing is part of our everyday life. For example, we queue at the checkout counters at 

supermarkets, for banking services in a bank and to purchase food at fast-food restaurants. A queue 

forms whenever demand exceeds the existing capacity to serve. This real-life phenomenon, though 

commonly seen, is not usually studied in pre-university or even first-year undergraduate courses. 

Queuing theory may be incorporated into undergraduate Operations Research or Statistics courses 

at more senior levels due to its complexity and the demand for mathematical maturity of students. If 

discussions of queues were done at all at lower levels, it would not usually involve working through 

the whole process, such as including the collection of real data. 

In this paper, we propose that queues be taught to pre-university students or first-year 

undergraduates, who need not understand all the details of the theory, but can still appreciate a real 

application of mathematics through simulations. Though some researchers have discussed the use of 

simulation in teaching mathematics to high school or university students (see for example, 

Goldsman [1], Reed [2] and Sánchez [3]), they either do not consider modelling or do not present 

their teaching processes in detail. Our focus is on showcasing how the entire modelling process of 

the mechanism of queues, from data collection to constructing simulation of queues (not simply 

using a black box) and to analysis of the queuing model may be introduced to students. 

Ang [4] discussed the importance of promoting mathematical modelling in classroom 

practices and the use of technology as a bridge for the cognitive gap that hinders a student from 
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carrying out a modelling task. The advantages of using simulation as a pedagogical device has been 

discussed widely (see [1], [2], [3] and [5]). Teachers indicated their beliefs in the usefulness of 

simulation activities in solving problems, giving meaning to and enhancing the understanding of 

concepts [3]. Students often find active participation in simulation to be more interesting, 

intrinsically motivating and closer to real-world experiences than other learning modes [5]. 

Hence in a nutshell, we are proposing the use of simulation and modelling to teach either 

students who do not have enough background in mathematics and probability theory and need 

bridging to high level queuing concepts, or students who may not be inclined to proceed to high 

level mathematics, but can appreciate queues which are a part of life in the modern world. In the 

process, students are exposed to a whole package of mathematical knowledge; modelling processes, 

stochastic processes, mechanisms of queues, and real applications. 

 

2. Basics of an M/M/1 queue 
In this section, we will present some basics of queuing theory that instructors may wish to discuss 

with their pre-university or first-level university students to enable them to partake in the whole 

modelling process of queues. In particular, we focus on teaching modelling of queues using the 

M/M/1 model. For simplicity of exposition and convenience of data collection, queues at an 

automatic teller machine (ATM) are considered. Figure 1 shows a schematic of a typical queue at 

an ATM. Note that an ATM can also be more reliable in terms of service times since it is not 

“human” and will not get tired over time. 

 

 

 

 

 

 

 

Figure 1: A single-server queue at an ATM 
 

In a simple queuing model, the three components involved are the arrival process, service 

process and the queue structure. The arrival process typically involves three aspects:  

 how customers arrive, for example, singly or in groups (batch or bulk arrivals) 

 how arrivals are distributed in time, for example, what is the distribution of inter-arrival 

times (times between successive arrivals) 

 whether the number of customers is finite or infinite.  

The characteristics of a service process include the following:  

 how long the service will take, that is, the service time distribution 

 number of servers available 

 whether each server has a separate queue or there is one queue for all servers. 

A queue structure determines:  

 how a person is chosen to be served from a set of waiting customers, for example, first-in 

first-out (or first-come first-served), last-in first-out or randomly 

 whether there is balking (customers do not join queue if it is too long), reneging (customers 

leave queue after waiting for too long), jockeying (customers switching between queues) 

 if the queue is of finite or infinite capacity.  

In an ATM queue, customers arrive randomly over time and wait for their turns in a single 

queue, and the ATM (single-server) serves one customer at a time on a “first in first out” basis. The 

modelling task is to construct a model that can simulate such a queuing system.  
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The simplest and most commonly considered queue is the M/M/1 model, where the “1” 

implies that there is only one server. The first “M” stands for Markov or memoryless and means 

arrivals occur according to a Poisson process. A Poisson process is a stochastic process (a collection 

of random variables used to represent the evolution of a system over time) where the inter-arrival 

times are exponentially distributed. That is, if 𝑎 represents the average number of customers 

arriving per unit time, then the probability that the inter-arrival time 𝑇 exceeds the value 𝑡 is given 

by 𝑃(𝑇 > 𝑡) = 𝑒−𝑎𝑡.  

The second “M” also stands for Markov and denotes that service times of the server are 

exponentially distributed. That is, if 𝑏 represents the average number of customers served per unit 

time, then the probability that the service time 𝑆 exceeds the number 𝑠 is given by 𝑃(𝑆 > 𝑠) =
𝑒−𝑏𝑠. We assume that both the inter-arrival and service times follow exponential distributions 

because this distribution is the only continuous distribution that possesses the unique memoryless 

property. That is, the probability of waiting an additional time unit for the next customer arrival 

does not depend on how long it has been since the previous arrival, and the probability of 

completing a service within the next given time period is independent of how long the person has 

been served already. 

For the simple queuing system above, there are useful formulae that can be derived under 

the assumption that the system has reached a steady state - that is, the system has been running 

long enough so as to settle down into some kind of equilibrium position. Or in other words, the 

operating characteristics of the queue (for example, expected waiting time and expected number of 

customers in the system) do not vary with time. But note of course that in real-life, systems often do 

not reach such a state. 

Let  𝜌 =  
𝑎

𝑏
  be the traffic intensity, that is, a measure of traffic congestion for the server. It is 

clear that if  𝜌 < 1, that is, the average arrival rate is  less than the average service rate, then the 

queue length approaches a constant and the system reaches steady state. Otherwise, the queue 

grows indefinitely. Then according to the M/M/1 model, the expected steady state waiting time in a 

queue 𝑊𝑞 and the expected total time spent in system 𝑊 are 

 𝑊𝑞 =  
 𝜌

𝑏−𝑎
 (1) 

and 

 𝑊 =  
1

𝑏−𝑎
. (2) 

Though the derivations for the formulae above are complex in classical queuing theory, these 

equations are actually simple and easy to use. That is, given the arrival and service rates, we can 

easily calculate the expected times 𝑊𝑞 and 𝑊 in a queuing system. Note that the above and other 

relevant formulae (e.g., for average queue length) can be derived using birth-death processes. 

Students who are more mathematically mature can be referred to Hillier and Lieberman [6] or 

Bunday [7] for details. 

3. Data collection and simulation process of an ATM queue 

With a basic understanding of queuing theory, students can proceed to collect data at an ATM to 

obtain estimates of the important parameters 𝑎 and 𝑏. For example, students can video-record a 

queue or use a digital watch to record the arrival and finish times of customers on site. The inter-

arrival times, service times, wait times and total times (wait time and service time) can then be 

calculated with the aid of an electronic spreadsheet. As an example, Figure 2 shows a screenshot of 

an MS Excel worksheet with data that we obtained from observing an ATM queue for 

approximately an hour at our university campus around late lunch time (when there is sufficient 

traffic flow). 
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Figure 2: Screenshot of Excel worksheet with data from an ATM queue 

 

In this case, the inter-arrival times in column B are obtained from the arrival times in 

column C (e.g., cell B7 = C7-C6). The service times in column D are calculated using columns C 

and E (e.g., cell D7 = E7-MAX(E6,C7)). That is, the service time of a customer depends on 

whether the customer arrives before/after the previous customer has completed the service. It is 

clear that total times in column F are the differences between the finish and arrival times, while the 

wait times in column G are the differences between total times and service times. Note that 

𝑎 =  
no. of customers

sum (inter-arrival times)
  and 𝑏 =  

no. of customers

sum (service times)
.   The values of 𝑎, 𝑏, average total and average 

wait times can then be calculated easily and are reflected in Figure 2. 

Students can better appreciate the mechanism of queues and learn about generating 

randomness through simulation. Instructors can help students to understand the steps of each 

simulation run using a flowchart as shown in Figure 3. Note that we assume the inter-arrival time 

and arrival time of the first customer to be 0 (for convenience).  

The random inter-arrival times (𝑖𝑎𝑡) and service times (𝑠𝑡) can be generated using “Inverse 

Transform Method”. For example, to generate random numbers from an exponential distribution 

with parameter 𝑎, we first generate 𝑟 uniform random numbers over [0,1]. Then let  𝑟 = 1 − 𝑒−𝑎𝑡 

(cumulative distribution function). It follows that 𝑡 = −
1

𝑎
log (1 − 𝑟). Since 𝑟~𝑈(0,1), we have 

1 − 𝑟~𝑈(0,1). Thus, we can simply let 𝑡 = −
1

𝑎
log (𝑟). That is, we set  𝑖𝑎𝑡 = −

1

𝑎
log (𝑟). Similarly, 

we set  𝑠𝑡 = −
1

𝑏
log (𝑟′), where 𝑟′ are also uniform random numbers generated over [0,1]. For more 

details, refer to [8].  

To execute the simulation program, the user will also need to input the number of simulation 

runs desired, that is, we are actually doing Monte Carlo simulation. The idea is to calculate results 

many times, each time using a different set of random values from the uniform distribution. The 

belief is that averaging the results of many simulations should provide a better indication of real 

behaviour.  The output of the whole program will then be the average total time in the system and 

average wait time of customers, taken over all simulation runs. In addition, the standard deviations 

of the average total time and wait time of the simulations are computed. More details are provided 

as comments within the program provided in Appendix A.  

 

 

 

 

/min /min 
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Figure 3: Flowchart describing a simulation run of the ATM queue 

No 

Yes 

No 

Yes 

Input values of 𝑎, 𝑏 and number of customers (ncust) 

Generate random inter-arrival times (𝑖𝑎𝑡) and random service 

times (𝑠𝑡) of customers, with 𝑖𝑎𝑡 of first customer set to 0 

 𝑎𝑡(𝑖) = 𝑎𝑡(𝑖 − 1) + 𝑖𝑎𝑡(𝑖) 

Set 𝑎𝑡(1) = 0. Compute arrival time of customer 𝑖 (𝑖 ≥ 2): 

 𝑓𝑡(1) = 𝑎𝑡(1) + 𝑠𝑡(1) 

Compute finish time of customer 1: 

Is arrival time of  

customer 𝑖 (𝑖 ≥ 2)  

more than finish time  

of customer 𝑖 − 1? 

Yes No 

 𝑓𝑡(𝑖) = 𝑎𝑡(𝑖) + 𝑠𝑡(𝑖) 

Finish time of customer 𝑖: 
 𝑓𝑡(𝑖) = 𝑓𝑡(𝑖 − 1) + 𝑠𝑡(𝑖) 

Finish time of customer 𝑖: 

Compute vector of total times in system = 𝑓𝑡 − 𝑎𝑡 

Wait times vector = total times - 𝑠𝑡 

Is 𝑖 < ncust? 

 

Compute average total time in system 

and average wait time of customers.  
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4. Analysis of results for an ATM queue 
We will use the values of 𝑎, 𝑏 and number of customers observed from one of our data sets to 

discuss how simulation can be used to verify real data or relate to classical theory. With input 

values = 1.087, 𝑏 = 1.239, ncust =75 and nsim = 1 × 106, the program output were “ave wait time 

= 3.057 mins” and “ave total time = 3.865  mins”. The standard deviations of the average wait time 

and average total time from simulations were 2.246 mins and 2.306 mins respectively.  

 

Table 4: Summary of different average times for an ATM queue 

 

Average times Simulated Real data Theoretical 

Wait time 3.057 mins 2.62 mins 5.772 mins 

Total time 3.865 mins 3.42 mins 6.579 mins 

 

The table above summarizes all the different average wait and total times obtained for this 

queue. Note that the theoretical times are calculated using equations (1) and (2). We see that these 

values vary quite a lot from the simulated and real times. They fall just outside one standard 

deviation from the simulated average times. The discrepancies could be due to the small sample 

size (75 customers) and probably the short duration (about 70 mins) of the experiment. If traffic 

flow could be monitored over several days, perhaps more accurate results could be obtained.  

However, we can check that the actual average wait time and total time fall within half a 

standard deviation from the simulated average values. Thus perhaps we can conclude that M/M/1 

model is quite suitable to model ATM queues.  

 

Up to this point, our focus is on a single-queue-single-server system. For a single-queue-

multi-server system, the theory involved, the data collection process and the simulation procedure 

are undoubtedly more complex. However, it is still possible to introduce such a queue to students 

through modelling and simulation.   

      

5. Basics of an M/M/c queue 
To introduce an M/M/c queue, instructors basically only need to discuss the underlying components 

of a single-queue-multi-server system, similarly to that discussed in Section 2. As before, the arrival 

process, service process and the queue structure constitute such a system. For simplicity, we will 

use a queue with 3 ticketing counters at a Cineplex as an example. Note that the two “Ms” in 

M/M/c are the same as before, and the “c” (where c > 1) refers to the multiple number of servers. 

Here, we have c = 3.  See Figure 5 below. 

 
      
       
      Customers 
          arrive 
 

 

 

Figure 5: A multi-server queue at a Cineplex 

 

The main difference between this multi-server ticketing queue and the single-server ATM 

queue is that though customers are attended to in a first-come first-served manner, a customer who 

arrives first may not leave the system first, as it depends on the service time. Similar to the M/M/1 

case, there are formulae for the expected steady state waiting time in a queue and the expected total 

Exit Server 2 

Server 1 

Server 3 
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time spent in a single-queue-multi-server system, assuming that 𝜌 < 1 and same service rate for all 

the servers. However, the expressions are a lot more complicated and may not be easy for students 

at these levels to grasp. Hence we will omit them here. 

 

6. Data collection and simulation process of a multi-server ticketing queue  

Data was collected downtown at a Cineplex with three servers (named Server A, Server B and 

Server C) using a video camera. The arrival times, finish times and service start times of the 

customers, along with which servers they used, were then extracted from the video and recorded in 

an excel spreadsheet as shown in Figure 6. Each customer’s service time was found from the 

difference between the finish time and the service start time. The average service time for each of 

the three servers was then easily obtained. Other relevant times were calculated similarly as before.  

Note that the queue data was recorded during a busy Saturday afternoon, hence it was 

difficult to wait for the system to be empty (i.e., no customer being served or in queue), to start with 

the collection of data. The data of 39 customers was recorded in a time span of 17 minutes. At the 

start of data collection, there were three customers being served and four customers who were in the 

queue. Hence the arrival times of the first 7 customers were unknown. When the collection of data 

ended, there were 3 customers who were still being served and 5 other customers who were still in 

the queue. Thus the finish times of these 8 customers were not recorded. In addition, it was 

observed that customers randomly approach any idle server if more than one were available. 

 

 
Figure 6: Screenshot of excel data of a Cineplex ticketing queue system 

 

 The average arrival rate 𝑎 and average service rates for the three servers 𝑏1, 𝑏2 and 𝑏3 

respectively, can be calculated as before and used as inputs for our single-queue multi-server 

simulation program, together with the number of customers and number of simulations required. 

Figure 7 shows the flow of each simulation run in a nutshell. As before, we generate the random 

inter-arrival times using 𝑖𝑎𝑡 = −
1

𝑎
log (𝑟), where 𝑟~𝑈(0,1). 

The main differences between this simulation program and that used for M/M/1 queues are 

as follows: 

 Different random service times are generated for the three servers based on the different 

average service rates, that is, for each server 𝑖, we set 𝑠𝑡𝑖 = −
1

𝑏𝑖
log (𝑟′), where 𝑟′~𝑈(0,1).   

 Additional matrices are used to record the actual service time and server used by each 

customer, frequencies of use of the servers, and times when the servers are available   
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 We have to identify idle servers and choose randomly among idle servers to service next 

customer 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Flowchart describing a simulation run of a Cineplex ticketing queue 

No 

Yes 

No 

Yes 

Input value of 𝑎, matrix 𝑏 = [𝑏1 𝑏2 𝑏3]  and number of customers (ncust) 

Generate random inter-arrival times (𝑖𝑎𝑡) with 𝑖𝑎𝑡 of first customer set to 0. 

For each server 𝑖, generate random service times of all customers based on 𝑏𝑖. 

 𝑎𝑡(𝑖) = 𝑎𝑡(𝑖 − 1) + 𝑖𝑎𝑡(𝑖) 

Set 𝑎𝑡(1) = 0. Compute arrival time of customer 𝑖 (𝑖 ≥ 2): 

 𝑓𝑡(1) = 𝑎𝑡(1) + service time of chosen server 

Compute finish time of customer 1 after randomly choosing one of the servers: 

Yes No 

Randomly choose server 

among idle servers. Finish time 

 𝑓𝑡(𝑖) = 𝑎𝑡(𝑖) + service time  

Compute vector of total times in system = 𝑓𝑡 − 𝑎𝑡 

Wait times vector = total times – service times 

Is 𝑖 < ncust? 

 

Compute average total time in system 

and average wait time of customers.  

Is there any idle 

server when customer  

𝑖 (𝑖 ≥ 2) arrives? 

At first available server (randomly 

choose one if there is more than one), 

𝑓𝑡(𝑖) = finish time of previous 

customer at server + service time  
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The detailed purposes of different parts of the program are provided as comments within the code 

given in Appendix B.  

 

7. Analysis of results for a multi-server ticketing queue   
As depicted in Figure 6, the “actual average wait time was 1 minute 18 seconds or 1.3 minutes”, 

and the “average total time was 2 minute 55 seconds or 2.917 minutes”. With input values of 

𝑎 = 1.8980, 𝑏1 = 0.6369, 𝑏2 = 0.6572, 𝑏3 = 0.5818, ncust = 39 and nsim = 50000, the 

simulation program output were “ave wait time =  2.2559” and “ave total time = 3.8788”. The 

standard deviations of the average wait time and average total time from simulations were 2.2281 

mins and 2.5858 mins respectively.  

Though the actual times are not close to the simulated times, it is possible that with a greater 

sample size, a longer duration of the experiment within a day, and observation of the queue over 

several days, results may be more accurate. In addition, we can see that the actual average wait time 

and total time fall within half a standard deviation from the simulated times. Hence perhaps an 

M/M/c model may still be quite suitable to model a cinema ticketing queue system.  

 

8. Conclusions    
In this paper, we present an approach to teach the modelling of single-queue-single-server and 

single-queue-multi-server systems through simulation to students who may not be mathematically 

mature enough to understand classical queuing theory. Through the entire process, students can 

learn a great variety of concepts while appreciating the natural phenomenon of queues in real life. 

Our hope is that pre-university and undergraduate educators will find this work useful in teaching 

statistics, modelling, and real-life applications of mathematics. As an extension, we can introduce 

the process of a multi-queue-multi-server system to students through modelling and simulation in a 

similar manner. 
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10. Appendices 
 

Appendix A 

 

% Simple queuing theory simulation, M/M/1 queue 

a = input('Input the mean number of arrivals per minute:');  

b = input('Input the mean number of customers served per minute:');  

ncust = input('Input the number of customers:');  

nsim = input('Input the number of simulations required:'); 

  

%Initialise ave_wait_time_matrix, ave_total_time_matrix 

ave_wait_time_matrix = [];  

% to initialize matrix of average wait times for all simulations 

ave_total_time_matrix = [];  

% to initialize matrix of average total times for all simulations 

   

for k = 1:nsim   % to run “nsim” number of simulations 

 

% Notations: 

% at = arrival time of a person joining the queue 

% st = service time (the time spent at the ATM machine) 

% ft = finish time after waiting and being served. 

% 

% initialize arrays: 

at = zeros(ncust,1); % all arrival times are initialized  

ft = zeros(ncust,1); % all finish times are initialized 

  

% Generate random arrival times assuming Poisson process: 

r = rand(ncust-1,1); % generate “ncust-1” uniform random numbers 

iat = -1/a * log(r); % generate inter-arrival times according to  

% exponential distribution  

iat = [0; iat]; %to set zero iat of first customer  

at(1) = 0; % arrival time of first customer is assumed 0 

 

for i=2:ncust 

at(i) = at(i-1) + iat(i); % arrival times of other customers 

end 

  

% Generate random service times for each customer: 

r = rand(ncust,1); % generate “ncust” uniform random numbers 

st = -1/b * log(r); % generate service times according to 

% exponential distribution 

  

% Compute time at which each customer finishes: 

ft(1) = at(1)+st(1); % finish time for first customer 

 

for i=2:ncust   

  ft(i) = max(at(i)+st(i), ft(i-1)+st(i));  

% to obtain finish time for all other customers 

end 
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total_time = ft - at; % total time spent (in queue and in service) 

wait_time = total_time - st; % time spent waiting in queue 

 

for j = 1:ncust 

if wait_time(j) < 0 

wait_time(j) = 0; % to manually set wait time to be zero  

% when there are computer errors 

end 

end 

  

ave_wait_time = sum(wait_time)/ncust; % compute average wait time 

ave_total_time= sum(total_time)/ncust; %compute average total time  

ave_wait_time_matrix = [ave_wait_time_matrix; ave_wait_time];  

%to add on ave_wait_time of current simulation to matrix 

ave_total_time_matrix = [ave_total_time_matrix; ave_total_time];  

%to add on ave_total_time of current simulation to matrix 

  

end 

  

ave_wait_time_final = sum(ave_wait_time_matrix)/nsim  

% to find average wait time taken over all simulations 

ave_total_time_final =  sum(ave_total_time_matrix)/nsim 

% to find average total time taken over all simulations 

  

sq_dev_wait_time  

= (ave_wait_time_matrix -ave_wait_time_final*ones(nsim,1)) 

   .*(ave_wait_time_matrix - ave_wait_time_final*ones(nsim,1)); 

% to find square of deviations of average wait time of each simulation from average  

% wait time take over all simulations 

  

std_dev_wait_time = sqrt(sum(sq_dev_wait_time)/(nsim-1)) 

% to find standard deviation of wait time  

   

sq_dev_total_time  

= (ave_total_time_matrix-ave_total_time_final*ones(nsim,1)) 

  .*(ave_total_time_matrix - ave_total_time_final*ones(nsim,1)); 

% to find square of deviations of average total time of each simulation from average  

% total time take over all simulations 

  

std_dev_total_time = sqrt(sum(sq_dev_total_time)/(nsim-1)) 

% to find standard deviation of total time  
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Appendix B 

 
% Simple queuing theory simulation, M/M/c queue 

% Multiple servers, single queue: 

a = input('Input the mean number of arrivals per minute:');  

b = input('Input the matrix of average service rates for the multiple servers:');  

ncust = input('Input the number of customers:');  

nsim = input('Input the number of simulations required:'); 

  

%Identify number of servers 

nserv = length(b); 

  

%Initialise ave_wait_time_matrix, ave_total_time_matrix 

ave_wait_time_matrix = [];   % to initialize matrix of average wait times  

                              % for all simulations 

ave_total_time_matrix = [];  % to initialize matrix of average total times  

                              % for all simulations 

  

for k = 1:nsim 

     

% Notations for each simulation run:      

% at = arrival time of a person joining the queue 

% ft = finish time after waiting and being served 

% sn = to record which server serves each customer 

% st = record of actual service time for each customer 

% fserv = records freq of cust served by each server  

% mst = matrix of service times for all possible customers at all servers 

% rec = matrix to keep record of the times servers can be available 

  

% initialize arrays: 

at = zeros(ncust,1); 

ft = zeros(ncust,1); 

sn = zeros(ncust,1); 

st = zeros(ncust,1); 

fserv = zeros(1,nserv); 

mst = zeros(ncust,nserv); 

rec = zeros(ncust,nserv); 

  

% Generate random arrival times of customers assuming Poisson process: 

r = rand(ncust-1,1);  % generate “ncust-1” uniform random numbers 

iat = -1/a * log(r);  % generate inter-arrival times according to  

                       % exponential distribution  

iat = [0; iat];  %to set zero iat of first customer  

at(1) = 0; % arrival time of first customer is assumed 0 

  

for i=2:ncust 

at(i) = at(i-1) + iat(i); % arrival times of 2nd to last customers 

end 
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% Generate random service times for each customer at each server: 

r = rand(ncust,1);  %generate random numbers from uniform distribution 

  

for i=1:nserv 

      mst(:,i) = -1/b(i)*log(r);   

end 

  

% Compute finish time of each customer, and update sn, st, fserv and rec: 

% for customer 1  

s = randi([1,nserv],1);  % choose randomly among all servers 

ft(1) = at(1) + mst(1,s);  % ft is according to service time of server "s" 

sn(1) = s;  % update that cust 1 is served by server "s" 

st(1) = mst(1,s);  % update service time of customer 1 

fserv(s) = 1;  % update that server "s" has served one customer 

rec(1,s) = ft(1);  % update record of time server "s" is available  

  

% for all other customers 

 for i = 2:ncust 

     

    rec(i,:) = rec(i,:)+rec(i-1,:);  % update record before ith customer arrives 

    m = min(rec(i-1,:));  % find earliest available time among all servers 

    minIDX = [];  % initialise servers that can serve ith customer 

     

    if at(i) < m  % ith customer needs to wait  

            

        for j = 1:nserv 

            if rec(i-1,j) == m 

               minIDX = [minIDX j]; %add on servers that can serve ith customer 

            end 

        end 

         

        L = length(minIDX); %no. of servers to choose from 

        r = randi([1,L],1); %choose integer randomly from 1 to L. 

        s = minIDX(r); %locate which server corresponds to chosen "r" 

        %for ft(i), need to add free time of serv s to service time of 

        %customer next to be served by serv "s" 

        ft(i) = rec(i-1,s)+mst(fserv(s)+1,s);  

         

    else  % ith customer does not need to wait 

         

        for j = 1:nserv 

            if rec(i-1,j) <= at(i) 

               minIDX = [minIDX j];  % add on servers that can serve ith customer 

            end 

        end 

         

        L = length(minIDX);  % no. of servers to choose from 

        r = randi([1,L],1);  % choose integer randomly from 1 to L. 

        s = minIDX(r);  % locate which server corresponds to chosen "r" 

        %for ft(i), we add arrival time of customer i to service time of 

        %customer next to be served by serv "s" 

        ft(i) = at(i)+mst(fserv(s)+1,s);     

    end 
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sn(i) = s; % update that customer i is served by server "s" 

    st(i) = mst(fserv(s)+1,s);  % update service time of customer i 

    fserv(s) = fserv(s)+1;  % update no. of customer served by "s" 

    rec(i,s) = ft(i);  % update record after ith customer arrives and is served 

     

end 

  

% Generate other statistics 

total_time = ft - at;  % total time spent by each customer 

wait_time = total_time - st;  % time spent waiting before being served 

  

for j = 1:ncust 

    if  wait_time(j) < 0 

        wait_time(j) = 0;   % to manually set wait time to be zero  

                                 % when there are computer errors 

    end 

end 

  

ave_wait_time = sum(wait_time)/ncust; 

ave_total_time = sum(total_time)/ncust; 

ave_wait_time_matrix = [ave_wait_time_matrix; ave_wait_time];  

%to add on ave_wait_time of current simulation to matrix 

ave_total_time_matrix = [ave_total_time_matrix; ave_total_time];  

%to add on ave_total_time of current simulation to matrix 

  

end 

  

ave_wait_time_final = sum(ave_wait_time_matrix)/nsim  

% to find average wait time taken over all simulations 

ave_total_time_final =  sum(ave_total_time_matrix)/nsim 

% to find average total time taken over all simulations 

  

sq_dev_wait_time = (ave_wait_time_matrix - ave_wait_time_final*ones(nsim,1)).* 

(ave_wait_time_matrix - ave_wait_time_final*ones(nsim,1)); 

% to find square of deviations of average wait time of each simulation from average wait 

% time take over all simulations 

  

std_dev_wait_time = sqrt(sum(sq_dev_wait_time)/(nsim-1)) 

% to find standard deviation of wait time  

  

sq_dev_total_time = (ave_total_time_matrix - ave_total_time_final*ones(nsim,1)).* 

(ave_total_time_matrix - ave_total_time_final*ones(nsim,1)); 

% to find square of deviations of average total time of each simulation 

% from average total time take over all simulations 

  

std_dev_total_time = sqrt(sum(sq_dev_total_time)/(nsim-1)) 

% to find standard deviation of total time  

 

 

 

 


