
 The Electronic Journal of Mathematics and Technology, Volume 9, Number 2, ISSN 1933-2823

Introducing Queuing Theory Through Simulations

Soon Wan Mei
e-mail: wanmei.soon@nie.edu.sg

Mathematics and Mathematics Education Academic Group,

National Institute of Education, Nanyang Technological University, Singapore

Ang Keng Cheng
e-mail: kengcheng.ang@nie.edu.sg

Mathematics and Mathematics Education Academic Group,

National Institute of Education, Nanyang Technological University, Singapore

Abstract
Queuing theory is usually introduced to students from second year onwards in a

university undergraduate programme, as the mathematical principles governing

queues can be fairly demanding, making it challenging to introduce any earlier.

However, we often see queues and experience queuing in real life. It would therefore

be appropriate, relevant and useful to introduce the concept of queuing theory to pre-

university students or first-year undergraduates. The approach suggested is through

simulation models supported by suitable technology. In doing so, students can

understand some basic probability theory and statistical concepts, such as the Poisson

process and exponential distribution, and learn how queues may be modelled through

simulation, without the need to know all about classical queuing theory. In this paper,

we will discuss the role that simulation can play in a classroom to create real world

learning experiences for students. To provide a concrete illustration, a set of real

data collected in a simple ATM queue will be used to explain how students can

systematically be engaged in a modelling activity involving queues. Following that,

queues at cinema ticketing counters are studied to discuss the modelling of a more

complex queue system.

1. Introduction
Queuing is part of our everyday life. For example, we queue at the checkout counters at

supermarkets, for banking services in a bank and to purchase food at fast-food restaurants. A queue

forms whenever demand exceeds the existing capacity to serve. This real-life phenomenon, though

commonly seen, is not usually studied in pre-university or even first-year undergraduate courses.

Queuing theory may be incorporated into undergraduate Operations Research or Statistics courses

at more senior levels due to its complexity and the demand for mathematical maturity of students. If

discussions of queues were done at all at lower levels, it would not usually involve working through

the whole process, such as including the collection of real data.

In this paper, we propose that queues be taught to pre-university students or first-year

undergraduates, who need not understand all the details of the theory, but can still appreciate a real

application of mathematics through simulations. Though some researchers have discussed the use of

simulation in teaching mathematics to high school or university students (see for example,

Goldsman [1], Reed [2] and Sánchez [3]), they either do not consider modelling or do not present

their teaching processes in detail. Our focus is on showcasing how the entire modelling process of

the mechanism of queues, from data collection to constructing simulation of queues (not simply

using a black box) and to analysis of the queuing model may be introduced to students.

Ang [4] discussed the importance of promoting mathematical modelling in classroom

practices and the use of technology as a bridge for the cognitive gap that hinders a student from

 The Electronic Journal of Mathematics and Technology, Volume 9, Number 2, ISSN 1933-2823

153

Customers arriving at

the server

Customer being served

ATM

carrying out a modelling task. The advantages of using simulation as a pedagogical device has been

discussed widely (see [1], [2], [3] and [5]). Teachers indicated their beliefs in the usefulness of

simulation activities in solving problems, giving meaning to and enhancing the understanding of

concepts [3]. Students often find active participation in simulation to be more interesting,

intrinsically motivating and closer to real-world experiences than other learning modes [5].

Hence in a nutshell, we are proposing the use of simulation and modelling to teach either

students who do not have enough background in mathematics and probability theory and need

bridging to high level queuing concepts, or students who may not be inclined to proceed to high

level mathematics, but can appreciate queues which are a part of life in the modern world. In the

process, students are exposed to a whole package of mathematical knowledge; modelling processes,

stochastic processes, mechanisms of queues, and real applications.

2. Basics of an M/M/1 queue
In this section, we will present some basics of queuing theory that instructors may wish to discuss

with their pre-university or first-level university students to enable them to partake in the whole

modelling process of queues. In particular, we focus on teaching modelling of queues using the

M/M/1 model. For simplicity of exposition and convenience of data collection, queues at an

automatic teller machine (ATM) are considered. Figure 1 shows a schematic of a typical queue at

an ATM. Note that an ATM can also be more reliable in terms of service times since it is not

“human” and will not get tired over time.

Figure 1: A single-server queue at an ATM

In a simple queuing model, the three components involved are the arrival process, service

process and the queue structure. The arrival process typically involves three aspects:

 how customers arrive, for example, singly or in groups (batch or bulk arrivals)

 how arrivals are distributed in time, for example, what is the distribution of inter-arrival

times (times between successive arrivals)

 whether the number of customers is finite or infinite.

The characteristics of a service process include the following:

 how long the service will take, that is, the service time distribution

 number of servers available

 whether each server has a separate queue or there is one queue for all servers.

A queue structure determines:

 how a person is chosen to be served from a set of waiting customers, for example, first-in

first-out (or first-come first-served), last-in first-out or randomly

 whether there is balking (customers do not join queue if it is too long), reneging (customers

leave queue after waiting for too long), jockeying (customers switching between queues)

 if the queue is of finite or infinite capacity.

In an ATM queue, customers arrive randomly over time and wait for their turns in a single

queue, and the ATM (single-server) serves one customer at a time on a “first in first out” basis. The

modelling task is to construct a model that can simulate such a queuing system.

 The Electronic Journal of Mathematics and Technology, Volume 9, Number 2, ISSN 1933-2823

154

The simplest and most commonly considered queue is the M/M/1 model, where the “1”

implies that there is only one server. The first “M” stands for Markov or memoryless and means

arrivals occur according to a Poisson process. A Poisson process is a stochastic process (a collection

of random variables used to represent the evolution of a system over time) where the inter-arrival

times are exponentially distributed. That is, if 𝑎 represents the average number of customers

arriving per unit time, then the probability that the inter-arrival time 𝑇 exceeds the value 𝑡 is given

by 𝑃(𝑇 > 𝑡) = 𝑒−𝑎𝑡.

The second “M” also stands for Markov and denotes that service times of the server are

exponentially distributed. That is, if 𝑏 represents the average number of customers served per unit

time, then the probability that the service time 𝑆 exceeds the number 𝑠 is given by 𝑃(𝑆 > 𝑠) =
𝑒−𝑏𝑠. We assume that both the inter-arrival and service times follow exponential distributions

because this distribution is the only continuous distribution that possesses the unique memoryless

property. That is, the probability of waiting an additional time unit for the next customer arrival

does not depend on how long it has been since the previous arrival, and the probability of

completing a service within the next given time period is independent of how long the person has

been served already.

For the simple queuing system above, there are useful formulae that can be derived under

the assumption that the system has reached a steady state - that is, the system has been running

long enough so as to settle down into some kind of equilibrium position. Or in other words, the

operating characteristics of the queue (for example, expected waiting time and expected number of

customers in the system) do not vary with time. But note of course that in real-life, systems often do

not reach such a state.

Let 𝜌 =
𝑎

𝑏
 be the traffic intensity, that is, a measure of traffic congestion for the server. It is

clear that if 𝜌 < 1, that is, the average arrival rate is less than the average service rate, then the

queue length approaches a constant and the system reaches steady state. Otherwise, the queue

grows indefinitely. Then according to the M/M/1 model, the expected steady state waiting time in a

queue 𝑊𝑞 and the expected total time spent in system 𝑊 are

 𝑊𝑞 =
 𝜌

𝑏−𝑎
 (1)

and

 𝑊 =
1

𝑏−𝑎
. (2)

Though the derivations for the formulae above are complex in classical queuing theory, these

equations are actually simple and easy to use. That is, given the arrival and service rates, we can

easily calculate the expected times 𝑊𝑞 and 𝑊 in a queuing system. Note that the above and other

relevant formulae (e.g., for average queue length) can be derived using birth-death processes.

Students who are more mathematically mature can be referred to Hillier and Lieberman [6] or

Bunday [7] for details.

3. Data collection and simulation process of an ATM queue

With a basic understanding of queuing theory, students can proceed to collect data at an ATM to

obtain estimates of the important parameters 𝑎 and 𝑏. For example, students can video-record a

queue or use a digital watch to record the arrival and finish times of customers on site. The inter-

arrival times, service times, wait times and total times (wait time and service time) can then be

calculated with the aid of an electronic spreadsheet. As an example, Figure 2 shows a screenshot of

an MS Excel worksheet with data that we obtained from observing an ATM queue for

approximately an hour at our university campus around late lunch time (when there is sufficient

traffic flow).

 The Electronic Journal of Mathematics and Technology, Volume 9, Number 2, ISSN 1933-2823

155

Figure 2: Screenshot of Excel worksheet with data from an ATM queue

In this case, the inter-arrival times in column B are obtained from the arrival times in

column C (e.g., cell B7 = C7-C6). The service times in column D are calculated using columns C

and E (e.g., cell D7 = E7-MAX(E6,C7)). That is, the service time of a customer depends on

whether the customer arrives before/after the previous customer has completed the service. It is

clear that total times in column F are the differences between the finish and arrival times, while the

wait times in column G are the differences between total times and service times. Note that

𝑎 =
no. of customers

sum (inter-arrival times)
 and 𝑏 =

no. of customers

sum (service times)
. The values of 𝑎, 𝑏, average total and average

wait times can then be calculated easily and are reflected in Figure 2.

Students can better appreciate the mechanism of queues and learn about generating

randomness through simulation. Instructors can help students to understand the steps of each

simulation run using a flowchart as shown in Figure 3. Note that we assume the inter-arrival time

and arrival time of the first customer to be 0 (for convenience).

The random inter-arrival times (𝑖𝑎𝑡) and service times (𝑠𝑡) can be generated using “Inverse

Transform Method”. For example, to generate random numbers from an exponential distribution

with parameter 𝑎, we first generate 𝑟 uniform random numbers over [0,1]. Then let 𝑟 = 1 − 𝑒−𝑎𝑡

(cumulative distribution function). It follows that 𝑡 = −
1

𝑎
log (1 − 𝑟). Since 𝑟~𝑈(0,1), we have

1 − 𝑟~𝑈(0,1). Thus, we can simply let 𝑡 = −
1

𝑎
log (𝑟). That is, we set 𝑖𝑎𝑡 = −

1

𝑎
log (𝑟). Similarly,

we set 𝑠𝑡 = −
1

𝑏
log (𝑟′), where 𝑟′ are also uniform random numbers generated over [0,1]. For more

details, refer to [8].

To execute the simulation program, the user will also need to input the number of simulation

runs desired, that is, we are actually doing Monte Carlo simulation. The idea is to calculate results

many times, each time using a different set of random values from the uniform distribution. The

belief is that averaging the results of many simulations should provide a better indication of real

behaviour. The output of the whole program will then be the average total time in the system and

average wait time of customers, taken over all simulation runs. In addition, the standard deviations

of the average total time and wait time of the simulations are computed. More details are provided

as comments within the program provided in Appendix A.

/min /min

 The Electronic Journal of Mathematics and Technology, Volume 9, Number 2, ISSN 1933-2823

156

Figure 3: Flowchart describing a simulation run of the ATM queue

No

Yes

No

Yes

Input values of 𝑎, 𝑏 and number of customers (ncust)

Generate random inter-arrival times (𝑖𝑎𝑡) and random service

times (𝑠𝑡) of customers, with 𝑖𝑎𝑡 of first customer set to 0

 𝑎𝑡(𝑖) = 𝑎𝑡(𝑖 − 1) + 𝑖𝑎𝑡(𝑖)

Set 𝑎𝑡(1) = 0. Compute arrival time of customer 𝑖 (𝑖 ≥ 2):

 𝑓𝑡(1) = 𝑎𝑡(1) + 𝑠𝑡(1)

Compute finish time of customer 1:

Is arrival time of

customer 𝑖 (𝑖 ≥ 2)

more than finish time

of customer 𝑖 − 1?

Yes No

 𝑓𝑡(𝑖) = 𝑎𝑡(𝑖) + 𝑠𝑡(𝑖)

Finish time of customer 𝑖:
 𝑓𝑡(𝑖) = 𝑓𝑡(𝑖 − 1) + 𝑠𝑡(𝑖)

Finish time of customer 𝑖:

Compute vector of total times in system = 𝑓𝑡 − 𝑎𝑡

Wait times vector = total times - 𝑠𝑡

Is 𝑖 < ncust?

Compute average total time in system

and average wait time of customers.

 The Electronic Journal of Mathematics and Technology, Volume 9, Number 2, ISSN 1933-2823

157

4. Analysis of results for an ATM queue
We will use the values of 𝑎, 𝑏 and number of customers observed from one of our data sets to

discuss how simulation can be used to verify real data or relate to classical theory. With input

values = 1.087, 𝑏 = 1.239, ncust =75 and nsim = 1 × 106, the program output were “ave wait time

= 3.057 mins” and “ave total time = 3.865 mins”. The standard deviations of the average wait time

and average total time from simulations were 2.246 mins and 2.306 mins respectively.

Table 4: Summary of different average times for an ATM queue

Average times Simulated Real data Theoretical

Wait time 3.057 mins 2.62 mins 5.772 mins

Total time 3.865 mins 3.42 mins 6.579 mins

The table above summarizes all the different average wait and total times obtained for this

queue. Note that the theoretical times are calculated using equations (1) and (2). We see that these

values vary quite a lot from the simulated and real times. They fall just outside one standard

deviation from the simulated average times. The discrepancies could be due to the small sample

size (75 customers) and probably the short duration (about 70 mins) of the experiment. If traffic

flow could be monitored over several days, perhaps more accurate results could be obtained.

However, we can check that the actual average wait time and total time fall within half a

standard deviation from the simulated average values. Thus perhaps we can conclude that M/M/1

model is quite suitable to model ATM queues.

Up to this point, our focus is on a single-queue-single-server system. For a single-queue-

multi-server system, the theory involved, the data collection process and the simulation procedure

are undoubtedly more complex. However, it is still possible to introduce such a queue to students

through modelling and simulation.

5. Basics of an M/M/c queue
To introduce an M/M/c queue, instructors basically only need to discuss the underlying components

of a single-queue-multi-server system, similarly to that discussed in Section 2. As before, the arrival

process, service process and the queue structure constitute such a system. For simplicity, we will

use a queue with 3 ticketing counters at a Cineplex as an example. Note that the two “Ms” in

M/M/c are the same as before, and the “c” (where c > 1) refers to the multiple number of servers.

Here, we have c = 3. See Figure 5 below.

 Customers
 arrive

Figure 5: A multi-server queue at a Cineplex

The main difference between this multi-server ticketing queue and the single-server ATM

queue is that though customers are attended to in a first-come first-served manner, a customer who

arrives first may not leave the system first, as it depends on the service time. Similar to the M/M/1

case, there are formulae for the expected steady state waiting time in a queue and the expected total

Exit Server 2

Server 1

Server 3

 The Electronic Journal of Mathematics and Technology, Volume 9, Number 2, ISSN 1933-2823

158

time spent in a single-queue-multi-server system, assuming that 𝜌 < 1 and same service rate for all

the servers. However, the expressions are a lot more complicated and may not be easy for students

at these levels to grasp. Hence we will omit them here.

6. Data collection and simulation process of a multi-server ticketing queue

Data was collected downtown at a Cineplex with three servers (named Server A, Server B and

Server C) using a video camera. The arrival times, finish times and service start times of the

customers, along with which servers they used, were then extracted from the video and recorded in

an excel spreadsheet as shown in Figure 6. Each customer’s service time was found from the

difference between the finish time and the service start time. The average service time for each of

the three servers was then easily obtained. Other relevant times were calculated similarly as before.

Note that the queue data was recorded during a busy Saturday afternoon, hence it was

difficult to wait for the system to be empty (i.e., no customer being served or in queue), to start with

the collection of data. The data of 39 customers was recorded in a time span of 17 minutes. At the

start of data collection, there were three customers being served and four customers who were in the

queue. Hence the arrival times of the first 7 customers were unknown. When the collection of data

ended, there were 3 customers who were still being served and 5 other customers who were still in

the queue. Thus the finish times of these 8 customers were not recorded. In addition, it was

observed that customers randomly approach any idle server if more than one were available.

Figure 6: Screenshot of excel data of a Cineplex ticketing queue system

 The average arrival rate 𝑎 and average service rates for the three servers 𝑏1, 𝑏2 and 𝑏3

respectively, can be calculated as before and used as inputs for our single-queue multi-server

simulation program, together with the number of customers and number of simulations required.

Figure 7 shows the flow of each simulation run in a nutshell. As before, we generate the random

inter-arrival times using 𝑖𝑎𝑡 = −
1

𝑎
log (𝑟), where 𝑟~𝑈(0,1).

The main differences between this simulation program and that used for M/M/1 queues are

as follows:

 Different random service times are generated for the three servers based on the different

average service rates, that is, for each server 𝑖, we set 𝑠𝑡𝑖 = −
1

𝑏𝑖
log (𝑟′), where 𝑟′~𝑈(0,1).

 Additional matrices are used to record the actual service time and server used by each

customer, frequencies of use of the servers, and times when the servers are available

 The Electronic Journal of Mathematics and Technology, Volume 9, Number 2, ISSN 1933-2823

159

 We have to identify idle servers and choose randomly among idle servers to service next

customer

Figure 7: Flowchart describing a simulation run of a Cineplex ticketing queue

No

Yes

No

Yes

Input value of 𝑎, matrix 𝑏 = [𝑏1 𝑏2 𝑏3] and number of customers (ncust)

Generate random inter-arrival times (𝑖𝑎𝑡) with 𝑖𝑎𝑡 of first customer set to 0.

For each server 𝑖, generate random service times of all customers based on 𝑏𝑖.

 𝑎𝑡(𝑖) = 𝑎𝑡(𝑖 − 1) + 𝑖𝑎𝑡(𝑖)

Set 𝑎𝑡(1) = 0. Compute arrival time of customer 𝑖 (𝑖 ≥ 2):

 𝑓𝑡(1) = 𝑎𝑡(1) + service time of chosen server

Compute finish time of customer 1 after randomly choosing one of the servers:

Yes No

Randomly choose server

among idle servers. Finish time

 𝑓𝑡(𝑖) = 𝑎𝑡(𝑖) + service time

Compute vector of total times in system = 𝑓𝑡 − 𝑎𝑡

Wait times vector = total times – service times

Is 𝑖 < ncust?

Compute average total time in system

and average wait time of customers.

Is there any idle

server when customer

𝑖 (𝑖 ≥ 2) arrives?

At first available server (randomly

choose one if there is more than one),

𝑓𝑡(𝑖) = finish time of previous

customer at server + service time

 The Electronic Journal of Mathematics and Technology, Volume 9, Number 2, ISSN 1933-2823

160

The detailed purposes of different parts of the program are provided as comments within the code

given in Appendix B.

7. Analysis of results for a multi-server ticketing queue
As depicted in Figure 6, the “actual average wait time was 1 minute 18 seconds or 1.3 minutes”,

and the “average total time was 2 minute 55 seconds or 2.917 minutes”. With input values of

𝑎 = 1.8980, 𝑏1 = 0.6369, 𝑏2 = 0.6572, 𝑏3 = 0.5818, ncust = 39 and nsim = 50000, the

simulation program output were “ave wait time = 2.2559” and “ave total time = 3.8788”. The

standard deviations of the average wait time and average total time from simulations were 2.2281

mins and 2.5858 mins respectively.

Though the actual times are not close to the simulated times, it is possible that with a greater

sample size, a longer duration of the experiment within a day, and observation of the queue over

several days, results may be more accurate. In addition, we can see that the actual average wait time

and total time fall within half a standard deviation from the simulated times. Hence perhaps an

M/M/c model may still be quite suitable to model a cinema ticketing queue system.

8. Conclusions
In this paper, we present an approach to teach the modelling of single-queue-single-server and

single-queue-multi-server systems through simulation to students who may not be mathematically

mature enough to understand classical queuing theory. Through the entire process, students can

learn a great variety of concepts while appreciating the natural phenomenon of queues in real life.

Our hope is that pre-university and undergraduate educators will find this work useful in teaching

statistics, modelling, and real-life applications of mathematics. As an extension, we can introduce

the process of a multi-queue-multi-server system to students through modelling and simulation in a

similar manner.

9. References

[1] D. Goldsman, A simulation course for high school students, in Proceedings of the 2007

Winter Simulation Conference, S.Henderson, B. Biller. M. Hsieh, J. Shortle, J. Tew, and R.

Barton, eds., J.W. Marriott Hotel, Washington, D.C. 9-12 December, 2007, pp. 2353-2356.

[2] J.H. Reed, Computer simulation: A tool to teach queuing theory, Experiential Learning

Enters the Eighties 7 (1980), pp. 63-66.

[3] E.S. Sánchez, Teachers' beliefs about usefulness of simulation with the educational software

fathom for developing probability concepts in statistics classroom, in Proceedings of The

Sixth International Conference on Teaching Statistics, B. Phillips, ed., Holiday Inn, Cape

Town, South Africa, 7-12 July, 2002

[4] K.C. Ang, Teaching and Learning Mathematical Modelling with Technology, in

Proceedings of the 15th Asian Technology Conference in Mathematics, W.C. Yang,M.

Majewski , T. Alwis , and P.H. Wooi , eds . , Kuala Lumpur, Malaysia, 17-21

December, 2010, pp. 19-29.

[5] L.M. Lunce, Simulations: Bringing the benefits of situated learning to the traditional

classroom, Journal of Applied Educational Technology 3(1) (2006), pp. 37-45.

[6] F.S. Hillier and G.J. Lieberman, Introduction to operations research, McGraw-Hill College,

New York, 2001.

[7] B.D. Bunday, An introduction to queuing theory, Oxford University Press, Oxford, England,

1996.

[8] L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986.

http://iase-web.org/documents/papers/icots6/6e2_sanc.pdf
http://iase-web.org/documents/papers/icots6/6e2_sanc.pdf
http://books.google.com/books/about/Introduction_to_operations_research.html?id=1GdRAAAAMAAJ
http://books.google.com/books/about/Introduction_to_operations_research.html?id=1GdRAAAAMAAJ

 The Electronic Journal of Mathematics and Technology, Volume 9, Number 2, ISSN 1933-2823

161

10. Appendices

Appendix A

% Simple queuing theory simulation, M/M/1 queue

a = input('Input the mean number of arrivals per minute:');

b = input('Input the mean number of customers served per minute:');

ncust = input('Input the number of customers:');

nsim = input('Input the number of simulations required:');

%Initialise ave_wait_time_matrix, ave_total_time_matrix

ave_wait_time_matrix = [];

% to initialize matrix of average wait times for all simulations

ave_total_time_matrix = [];

% to initialize matrix of average total times for all simulations

for k = 1:nsim % to run “nsim” number of simulations

% Notations:

% at = arrival time of a person joining the queue

% st = service time (the time spent at the ATM machine)

% ft = finish time after waiting and being served.

%

% initialize arrays:

at = zeros(ncust,1); % all arrival times are initialized

ft = zeros(ncust,1); % all finish times are initialized

% Generate random arrival times assuming Poisson process:

r = rand(ncust-1,1); % generate “ncust-1” uniform random numbers

iat = -1/a * log(r); % generate inter-arrival times according to

% exponential distribution

iat = [0; iat]; %to set zero iat of first customer

at(1) = 0; % arrival time of first customer is assumed 0

for i=2:ncust

at(i) = at(i-1) + iat(i); % arrival times of other customers

end

% Generate random service times for each customer:

r = rand(ncust,1); % generate “ncust” uniform random numbers

st = -1/b * log(r); % generate service times according to

% exponential distribution

% Compute time at which each customer finishes:

ft(1) = at(1)+st(1); % finish time for first customer

for i=2:ncust

 ft(i) = max(at(i)+st(i), ft(i-1)+st(i));

% to obtain finish time for all other customers

end

 The Electronic Journal of Mathematics and Technology, Volume 9, Number 2, ISSN 1933-2823

162

total_time = ft - at; % total time spent (in queue and in service)

wait_time = total_time - st; % time spent waiting in queue

for j = 1:ncust

if wait_time(j) < 0

wait_time(j) = 0; % to manually set wait time to be zero

% when there are computer errors

end

end

ave_wait_time = sum(wait_time)/ncust; % compute average wait time

ave_total_time= sum(total_time)/ncust; %compute average total time

ave_wait_time_matrix = [ave_wait_time_matrix; ave_wait_time];

%to add on ave_wait_time of current simulation to matrix

ave_total_time_matrix = [ave_total_time_matrix; ave_total_time];

%to add on ave_total_time of current simulation to matrix

end

ave_wait_time_final = sum(ave_wait_time_matrix)/nsim

% to find average wait time taken over all simulations

ave_total_time_final = sum(ave_total_time_matrix)/nsim

% to find average total time taken over all simulations

sq_dev_wait_time

= (ave_wait_time_matrix -ave_wait_time_final*ones(nsim,1))

 .*(ave_wait_time_matrix - ave_wait_time_final*ones(nsim,1));

% to find square of deviations of average wait time of each simulation from average

% wait time take over all simulations

std_dev_wait_time = sqrt(sum(sq_dev_wait_time)/(nsim-1))

% to find standard deviation of wait time

sq_dev_total_time

= (ave_total_time_matrix-ave_total_time_final*ones(nsim,1))

 .*(ave_total_time_matrix - ave_total_time_final*ones(nsim,1));

% to find square of deviations of average total time of each simulation from average

% total time take over all simulations

std_dev_total_time = sqrt(sum(sq_dev_total_time)/(nsim-1))

% to find standard deviation of total time

 The Electronic Journal of Mathematics and Technology, Volume 9, Number 2, ISSN 1933-2823

163

Appendix B

% Simple queuing theory simulation, M/M/c queue

% Multiple servers, single queue:

a = input('Input the mean number of arrivals per minute:');

b = input('Input the matrix of average service rates for the multiple servers:');

ncust = input('Input the number of customers:');

nsim = input('Input the number of simulations required:');

%Identify number of servers

nserv = length(b);

%Initialise ave_wait_time_matrix, ave_total_time_matrix

ave_wait_time_matrix = []; % to initialize matrix of average wait times

 % for all simulations

ave_total_time_matrix = []; % to initialize matrix of average total times

 % for all simulations

for k = 1:nsim

% Notations for each simulation run:

% at = arrival time of a person joining the queue

% ft = finish time after waiting and being served

% sn = to record which server serves each customer

% st = record of actual service time for each customer

% fserv = records freq of cust served by each server

% mst = matrix of service times for all possible customers at all servers

% rec = matrix to keep record of the times servers can be available

% initialize arrays:

at = zeros(ncust,1);

ft = zeros(ncust,1);

sn = zeros(ncust,1);

st = zeros(ncust,1);

fserv = zeros(1,nserv);

mst = zeros(ncust,nserv);

rec = zeros(ncust,nserv);

% Generate random arrival times of customers assuming Poisson process:

r = rand(ncust-1,1); % generate “ncust-1” uniform random numbers

iat = -1/a * log(r); % generate inter-arrival times according to

 % exponential distribution

iat = [0; iat]; %to set zero iat of first customer

at(1) = 0; % arrival time of first customer is assumed 0

for i=2:ncust

at(i) = at(i-1) + iat(i); % arrival times of 2nd to last customers

end

 The Electronic Journal of Mathematics and Technology, Volume 9, Number 2, ISSN 1933-2823

164

% Generate random service times for each customer at each server:

r = rand(ncust,1); %generate random numbers from uniform distribution

for i=1:nserv

 mst(:,i) = -1/b(i)*log(r);

end

% Compute finish time of each customer, and update sn, st, fserv and rec:

% for customer 1

s = randi([1,nserv],1); % choose randomly among all servers

ft(1) = at(1) + mst(1,s); % ft is according to service time of server "s"

sn(1) = s; % update that cust 1 is served by server "s"

st(1) = mst(1,s); % update service time of customer 1

fserv(s) = 1; % update that server "s" has served one customer

rec(1,s) = ft(1); % update record of time server "s" is available

% for all other customers

 for i = 2:ncust

 rec(i,:) = rec(i,:)+rec(i-1,:); % update record before ith customer arrives

 m = min(rec(i-1,:)); % find earliest available time among all servers

 minIDX = []; % initialise servers that can serve ith customer

 if at(i) < m % ith customer needs to wait

 for j = 1:nserv

 if rec(i-1,j) == m

 minIDX = [minIDX j]; %add on servers that can serve ith customer

 end

 end

 L = length(minIDX); %no. of servers to choose from

 r = randi([1,L],1); %choose integer randomly from 1 to L.

 s = minIDX(r); %locate which server corresponds to chosen "r"

 %for ft(i), need to add free time of serv s to service time of

 %customer next to be served by serv "s"

 ft(i) = rec(i-1,s)+mst(fserv(s)+1,s);

 else % ith customer does not need to wait

 for j = 1:nserv

 if rec(i-1,j) <= at(i)

 minIDX = [minIDX j]; % add on servers that can serve ith customer

 end

 end

 L = length(minIDX); % no. of servers to choose from

 r = randi([1,L],1); % choose integer randomly from 1 to L.

 s = minIDX(r); % locate which server corresponds to chosen "r"

 %for ft(i), we add arrival time of customer i to service time of

 %customer next to be served by serv "s"

 ft(i) = at(i)+mst(fserv(s)+1,s);

 end

 The Electronic Journal of Mathematics and Technology, Volume 9, Number 2, ISSN 1933-2823

165

sn(i) = s; % update that customer i is served by server "s"

 st(i) = mst(fserv(s)+1,s); % update service time of customer i

 fserv(s) = fserv(s)+1; % update no. of customer served by "s"

 rec(i,s) = ft(i); % update record after ith customer arrives and is served

end

% Generate other statistics

total_time = ft - at; % total time spent by each customer

wait_time = total_time - st; % time spent waiting before being served

for j = 1:ncust

 if wait_time(j) < 0

 wait_time(j) = 0; % to manually set wait time to be zero

 % when there are computer errors

 end

end

ave_wait_time = sum(wait_time)/ncust;

ave_total_time = sum(total_time)/ncust;

ave_wait_time_matrix = [ave_wait_time_matrix; ave_wait_time];

%to add on ave_wait_time of current simulation to matrix

ave_total_time_matrix = [ave_total_time_matrix; ave_total_time];

%to add on ave_total_time of current simulation to matrix

end

ave_wait_time_final = sum(ave_wait_time_matrix)/nsim

% to find average wait time taken over all simulations

ave_total_time_final = sum(ave_total_time_matrix)/nsim

% to find average total time taken over all simulations

sq_dev_wait_time = (ave_wait_time_matrix - ave_wait_time_final*ones(nsim,1)).*

(ave_wait_time_matrix - ave_wait_time_final*ones(nsim,1));

% to find square of deviations of average wait time of each simulation from average wait

% time take over all simulations

std_dev_wait_time = sqrt(sum(sq_dev_wait_time)/(nsim-1))

% to find standard deviation of wait time

sq_dev_total_time = (ave_total_time_matrix - ave_total_time_final*ones(nsim,1)).*

(ave_total_time_matrix - ave_total_time_final*ones(nsim,1));

% to find square of deviations of average total time of each simulation

% from average total time take over all simulations

std_dev_total_time = sqrt(sum(sq_dev_total_time)/(nsim-1))

% to find standard deviation of total time

